Location and Climate

Jundee Operations is located 790km (1,150km by road) NE of Perth Western Australia and is situated in the northern Yandal greenstone belt. The mine, which commenced production in 1995, is currently owned by Northern Star Resources Limited (ASX: NST). The operation controls some 48,000ha of mining and exploration leases over a 45km strike. The operation is the head lease holder of the Jundee Pastoral Station covering ~131,887ha, and has access rights to the leases covering the Lake Violet and Mill Rose Pastoral Stations.

The climate is classed as arid with annual rainfall of ~220mm per year – pan evaporation exceeds 4,000mm per year.

Average maximum temperature in January is 38°C and for July is 19°C.

Average minimum temperature in January is 23°C and for July is 6.5°C

History of Exploration - Jundee/Nimary Goldfield

There is little recorded exploration activity in the Northern Yandal Belt prior to the early 1970s, which is surprising given the proximity of the belt to the historic Wiluna Gold Camp (40km SW).

Modern exploration of the Jundee area began in 1978, when the ground was taken up by Chevron Exploration. Chevron explored the felsic sequence to the west of Jundee for base metals but was unsuccessful, and the ground was surrendered in 1983.

In 1983 the area was pegged by Mark Creasy after he had identified gold bearing gossanous outcrops at Plover Bore whilst Chevron held the ground. He entered into a partnership with several others, forming a company called ‘Mineral Estates’, who tried to raise funds to explore but were unsuccessful due to the economic climate that prevailed at the time. The ground was relinquished through non-payment of rent (Lewington, 1995).

Creasy then re-applied for the ground in 1985, and set about exploring the area using geochemical sampling, panning and mapping. He located nuggets on the Jundee ground, but was unable to locate any on the Nimary ground. Creasy approached Chevron in 1988 with regard to forming an alliance to explore the Jundee-Nimary tenements. Chevron procrastinated, taking 12 months to come to terms, and soon after an agreement was reached Chevron decided to pull out of Australia. This left Creasy in a difficult position, he had done no work on the Jundee-Nimary tenements for a year, having expected that Chevron would have done the necessary work, and needed to make a statutory 50% reduction to his exploration license. He decided to drop the western part, including the Nimary area, where he hadn’t found any nuggets. He then had to wait for 90-days to reapply for the ground. One week before the end of the waiting period, the Nimary tenements were picked up by Hunter Resources (Lewington, 1995).

In 1989, Creasy employed Geochemix Australia to complete a LAG sampling program over the Jundee tenements, which identified two prospective anomalies. This was followed up with a program of 83 RAB holes, of which only four had intersections greater than 1gpt Au. In late 1990, Creasy approached Great Central Mines (GCM), with regard to forming a joint venture to explore the tenements. GCM reviewed the results of exploration to date, and felt that there was a good chance that there was an economic gold deposit within the tenements (Wright and Herbison, 1995). A joint venture agreement was signed in late 1991.

A program of 152 RAB holes was drilled at Jundee early in 1992, with 17 holes returning composite grades >1gpt Au, and 4 returning >2gpt Au. RAB drilling was stopped due to heavy rain, and GCM’s exploration focus moved south, where they had success with the discovery of the Bronzewing Deposit. RAB and RC follow up recommenced at Jundee in August 1993, and by September 1995 eight deposits had been identified (Hughes, Main, Barton, Northwest, Deakin, Fisher, Cook and Reid), with a total contained resource of 15,000,000 tonnes at 2.7gpt Au for 1.3 million ounces (Wright and Herbison, 1995). In 1995, GCM purchased Mark Creasy’s tenements at Jundee and Bronzewing for $117 million dollars. Mining commenced at Jundee in late 1995, with the first gold pour on 27 of December 1995.
Meanwhile on the Nimary tenements picked-up by Hunter Resources, exploration for gold based on the Boddington laterite-hosted gold model commenced and a regional LAG sampling program was completed in 1990. From this program a 3km x 1.5km gold anomaly was identified, which was followed up by a program of 343 RAB holes, 21 RC holes and 4 diamond holes. Four gold prospects were identified (Nim1, Nim2, Nim3 and Nim4), which in 1990 were estimated to contain an inferred resource of 290,000 tonnes at 3.9 gpt Au for 36,366 ounces. No further work was carried out on the Nimary tenements until 1993, when Eagle Mining and Matlock Mining became involved in the project through a farm in agreement with Hunter Resources (the Wiluna Joint Venture). Exploration activity was stepped up, and by June 1995, a resource of 3,485,000 tonnes at 6.67 gpt Au for 2,293,000 ounces had been identified (Lewington, 1995).

Mining commenced in October 1995, with the first gold poured on Christmas Day 1995. Eagle Mining acquired full control of the Wiluna Joint Venture through acquisition of the remaining partners in 1996.

In 1996, GCM geologists recognised that the Hughes, Main and Barton Deposits were hosted by several differentiated dolerite sills, which had intruded layer parallel within a thin sequence of sedimentary rocks. Similarities between the Jundee dolerites and the Golden Mile Dolerite were noted, and this led to a program of deep diamond drilling. As a result of this drilling Barton Deeps was discovered (hosted within the Barton Dolerite) in August 1996, and by June 1997 a resource of 5,740,000 tonnes at 12.4 gpt Au for 2,293,000 ounces had been delineated. Underground development commenced in August 1997, with the first development ore produced in December 1997.

In October 1997, GCM took over Eagle Mining and Wiluna Mines, gaining control of the Nimary gold deposits, and consolidating exploration land holdings within the Yandal Belt. GCM paid $330 million for the two companies, which was largely financed by Normandy, who took a 25% stake in GCM.

The exploration focus for the later part of 1997 and early 1998 was on the Nimary tenements. Exploration drilling targeted the Nim3, Nim4, and Nim6 areas, with additional resources added along strike and down dip. Several new structures were identified, and small new resources were delineated at Kestrel and Gateway.

In mid-1998 it was proposed that a super pit (the ‘Boomerang-pit’), encompassing Nim1, Nim2, Nim3, Nim4, Nim6, Nim7, Hughes, Deakin, and Northwest, might be a viable option, and exploration drilling testing to 300m below surface was completed. Optimisation studies early in 1999 indicated that the ‘super pit’ option was not feasible given the narrowness of the mineralised lodes, the high strip ratio, and prevailing low gold prices.

In January 1999, Normandy and Joseph Gutnick’s private company Edensor, launched a bid (using an entity called Yandal Gold) to buyout the remaining 60% of shares of GCM not held by the two companies. This was successfully completed in May 1999, which left Normandy holding a controlling 58% interest in GCM. During this time there was no exploration drilling completed at Jundee.

Exploration recommenced in June 1999, and with the end of the Jundee deposits open pit life rapidly approaching, the focus was on testing areas immediately below and along strike from the existing pit designs to try and deepen the pits. For the most part this drilling had little impact, although Nim3 and Northwest pits were deepened.

From late 1999, the focus of exploration was on exploring for underground mineable resources, which could replace production when the open-pits were completed. New high-grade resources were discovered beneath Nim3 and Hughes.

In April 2000, Normandy secured 100% ownership of GCM, after acquiring the remaining 42% of the company from Edensor. Newmont acquired Normandy mining in early 2002.

In April 2001, the Westside high-grade system was discovered, lying immediately to the west of the lower levels of the Barton Deeps underground development (within the Hughes Dolerite). In September 2013, the field poured its 6 millionth ounce.

On the 13 May 2014, Northern Star announced that it had entered into an agreement with Newmont Mining Corporation to purchase the Jundee Gold Operations for a consideration of A$82.5M. Settlement of the transaction took place on 1 July 2014.
Processing History

Both entities, GCM and Eagle Mining established separate processing plants, at Jundee and Nimary some 4km apart. GCM established the milling circuit and support infrastructure by agreement on the adjacent Plover Bore lease (MS3/193), a lease owned by Mark Creasy. This Access Deed enabled GCM to conduct its mining activities within part of the Mining Lease.

On 24 August 2012, a contractual agreement between Newmont Mining Corporation and Creasy was agreed and executed which allowed for a General Purpose Lease (GPL) to be applied for by Creasy over the existing Junee Mine and infrastructure. This GPL was granted in April 2013 and as per the agreement was successfully transferred to Newmont Mining Corporation in October 2013; the Access Deed was terminated upon the transfer of the GPL.

The milling circuit constructed by GCM had a single SAG mill supported by a jaw crusher – it used all new materials. The workforce was housed at the newly constructed Junee Accommodation Village some 5km from the processing plant located on a tenement owned by GCM.

The Nimary processing plant, established by Eagle Mining, comprising a SAG/Ball Mill configuration was a second-hand plant secured from Dominion Mining. The workforce was housed at the newly constructed Nimary Accommodation Village some 3km from the Nimary Plant.

In 2007 the Nimary Mill and Village were decommissioned. The Nimary Ball Mill was transferred and incorporated into the Junee process circuit and the Nimary Village accommodation units were similarly transferred and incorporated into the Junee accommodation Village – this project cost ~$10M AUD and resulted in the operations shedding some 40 personnel and reducing its energy and water demand.

The Junee-Nimary operations have produced 40.5M tonnes of ore and poured 6.2M fine ounces of gold (~186 tonnes) at an average head grade of 5.08 gpt with a 93.8% recovery, since operations commenced.

Geology

The Junee-Nimary gold is hosted within a 4km (long) and 2.5km (wide) sequence of Achaean basalts and weakly differentiated dolerite sills separated by sedimentary rocks (carbonaceous shales, cherts, and siltstone) and dacitic porphyries. Younger felsic and intermediate porphyries and dolerite dykes intrude the sequence. The mine sequence is bounded to the west by a thick succession of felsic volcanics and volcaniclastics, and mineralisation diminishes eastwards as the mafic package becomes more magnesium–rich to ultramafic in composition.

The age of the gold mineralisation is approximately 2,700 million years (Archaean), and is controlled by a series of complex brittle fractures. Over 70% of the gold is hosted within the more brittle dolerite units with the remaining 30% associated with the basalts. The field has undergone multiphase deformation – folds, thrusts, strike and oblique slip faults. The gold is hosted within narrow, discontinuous quartz +/- carbonate veins (typically <0.5m wide) which contain abundant visible gold.

Low grade mineralisation occurred with the first phase of faulting. This was followed by the emplacement of large dacitic intrusions which locked up the initial fault lines causing some abutment pressure – during the second faulting phase this abutment pressure prevented the faults from slipping as easily as before causing a “ripping” between the two fault lines fracturing the rock and causing a relatively large low pressure zone. Gold-rich fluids then flowed into these low pressure zones (main mineralization event). There is minor post mineralisation faulting which causes some minor offsets of the loads.

Mining Operations

Initially ore was sourced solely from a number of open pits before in 1998 underground operations commenced (Barton Decline) – open pit operations around the immediate Junee-Nimary environ continued until 2002 when the last of the near surface material was mined. Open pit operations were recommenced approximately 30km to the south of Junee in 2003 when several small pits were started – open pit operations in this area (Gourdis-Vause) continued until September 2007.

Currently all ore is sourced from Junee underground operations which yield ~1.0M tonnes ore each year. There are three underground portals which provide access to the various underground lode structures – Barton, Gateway and Invicta portals. The Barton portal contains three actively working ore bodies (Nim3, Lyons and Westside) with Invicta consisting of the Invicta (remnants), Cardassian and Deakin ore bodies, while
the Gateway and Gringotts ore bodies are mined from the Gateway portal. Potential economic ore structures have also been identified at both Gateway (Nexus) and Barton (Moneyline) and are to be further interrogated via development access as well as exploration drilling.

The mining process is a geological driven model and production intensive due to the narrow and lithology of the ore bodies. There is a necessity for controlled mining practices to minimise the amount of waste dilution incurred during the ore extraction process. In general the ore is mined using top-down long-hole (up-hole) open stope bench retreat mining. The benches are nominally 20m apart (vertically). The lode structures have a dip of between 45-60 degrees and have multiple orientations. The mining method typically extracts the ore in 30-50m panels separated by 5-10m rib pillars which are left behind to provide geo-mechanical support. For ore structures that dip between 25.0 degrees and 35.0 degrees the ore is extracted using manual mining techniques (air-leg mining) to maximise efficiencies and reduce costs. Ore is hauled to the surface from the underground stope and development areas by 55 tonne articulated dump trucks.

The thin veins, the relatively flat lying structures, the multiple lode orientations and the complex structural geology of the Jundee ore body create an opportunity for NST through a rethink of the geological model with over eight million metres of drilling completed to date (~$1B spent); providing a large amount of data to support a reinterpretation of the model. The mine is currently developing and stoping at various depths depending on the particular ore body being mined (varies from 150m to 800m) employing different mining methods and extraction rates.

The lode domains across the operation are geographically expansive making ventilation complex with cascading ventilation in lower parts of the mines placing some constraints on production capacity. Each of the three mines has distinct characteristics that provide challenges for ventilation. The Barton mine has four primary return air rises (RAR) each equipped with a 350kW axial fan. The Invicta mine presently has one RAR and 350kW fan drawing air directly from the Cardassian ore body. At Gateway two 350kW exhaust fans are installed underground. Two large internal rises, one for return air (exhaust) and one for intake air (fresh) have recently been completed to extend the primary ventilation to the deepest parts of the mine. This newly added capacity allows for the deepening of the mine for several levels below the current active work areas. During the warmer periods of the year, the mine utilises a refrigeration unit to provide cooled air to the deeper parts of the mine. This unit can be moved to a different location to maximise its impact on active work areas.

The geographical spread of the mine also influences mine scheduling and planning. At times the distance equipment is required to travel between working areas impacts on the rate at which mining activities can be achieved. The various tasks that make up the mining cycle require diligent coordination to gain maximum output. Conversely, having several different working areas increases the flexibility of mining operations and minimises the demands related to mine services (ventilation, power, water and compressed air) necessary to operate plant and equipment.

The underground mining fleet comprises:

- 4 development drills
- 3 production drills (76mm diameter holes)
- 1 cable bolting drill
- 6 Atlas Copco 6020 haul trucks
- 6 R2900 loaders
- 3 charge-up units
- 10 service vehicles (integrated tool carriers, trucks, etc)

The Jundee Mine has commenced trials using automated technology on underground haulage trucks to facilitate haulage to the surface - this technology is similar to that being currently used for remote stope bogging practices.

The underground mining and fleet maintenance activity is carried out by the contract underground mining company Byrnecut Australia (BAPL). Daily mine management is shared co-jointly by BAPL and Northern Star personnel who form an integrated management structure to ensure that functional duplication is eliminated. BAPL are also responsible for the supply of surface mining equipment which facilitates secondary haulage, road maintenance, mill crusher feed and waste rock management operations.

All mine design, blast design, production geology, survey, geotechnical and mine planning is undertaken by Northern Star personnel.
Process Operations

The Jundee Processing circuit is a conventional CIL plant with a hard rock processing capacity of approximately 1.35M tonnes per year. On the current blend ratio of 1M tonnes of hard underground ore, the annual mill throughput is 1.7M tonnes. The make-up feed is sourced from some 1.2M tonnes of accumulated LG oxide material.

The grinding circuit is preceded by a single toggle overhead eccentric swing jaw crusher (150kw) with a 350 tonne per hour crushing capacity. The jaw crusher feeds a stockpile that holds 25,000 tonnes of crushed ore to ensure steady and controlled grinding circuit feed.

The grinding circuit comprises a 5.5m x 8.7m long (28’) low aspect steel lined SAG mill driven by a 3850 kilowatt motor. The SAG mill normally operates in open circuit, but has the capability to be operated in closed circuit SAG only configuration. The Ball Mill is a 4.26m x 6.68m low aspect rubber lined mill fitted with a 2200kw motor – the Ball Mill operates in closed circuit. The grinding circuit throughput is approximately 200t per hour on 60:40 blend of underground ore to oxide material. Oversize (scat) material from the SAG mill trommel screen reports to a pebble crusher for size reduction. The pebble crusher is a Metso HP100 cone crusher and is driven by a 90kW (120hp) motor. The crusher typically operates with a closed side setting (CSS) of 14mm. The crushed product from the pebble crusher is fed back into the SAG mill feed stream.

Pre-leach classification is achieved using a hydrocyclone classifier circuit consisting of 22 cyclones that are fed in parallel from a distributor. Only 8 to 12 of the cyclones are operated at any one time depending volume of slurry in the milling circuit. The cyclones are operated at a feed pressure of 110-130kpa.

The Jundee mill feed contains sufficient coarse gold to justify the inclusion of a gravity concentration process in the milling circuit. The cyclone underflow (spigot) product of two to three cyclones is diverted to a gravity circuit that comprises 2 x 30” Knelson concentrators. The concentrate produced by the Knelsons is fed to an In-line Leach Reactor (ILR) that uses a high concentration cyanide/caustic solution to rapidly leach the gold into a solution that is known as a pregnant eluate.

The cyclone overflow reports to the leaching and adsorption circuit where the non-gravity recoverable gold is recovered. The circuit comprises a Carbon in Leach (CIL) circuit with two leach tanks and six adsorption tanks. The slurry residence time in the leach and adsorption circuit is approximately 36 hours and each tank has a volumetric capacity of 1,700m$. The total amount of carbon distributed in the adsorption tanks is about 70t.

Loaded carbon is pumped from adsorption tank 1 in daily batches. Gold is then recovered from the carbon using a process called elution. The Jundee elution circuit is based on the Split Anglo-American Research Laboratories (AARL) elution process in which the gold laden carbon is first acid washed in an acid column, and then eluted in an elution column using hot (120°C) caustic cyanide solution.

The gold bearing eluate produced from the desorption process and the pregnant solution from the ILR is then circulated through electrowinning cells for approximately 20 hours. During this stage gold is electroplated onto cathodes that have been rapped with steel wool. The barren solution remaining at the end of the electrowinning cycle is then returned to the first leach tank to fully utilise the excess cyanide associated with the solution.

The gold laden steel wool is removed from the electrowinning cells, oxidized in a calcining oven and smelted directly with fluxes in a gas-fired furnace. The smelt produces a vitreous slag containing all the base metals and impurities and gold doré bars that contain approximately 86.5% gold and 12% silver.

The electrowinning, calcination and smelting processes are performed inside a secure gold room.

Jundee uses approximately 550t of liquid Cyanide (CN) in its process each year and uses online cyanide monitoring equipment to control leach circuit dosing. The cyanide analyser determines the CN concentration in leach tank 1 every four minutes and this value is relayed electronically to the mill control system. The mill control system then increases or decreases the speed of the CN feed pump depending on the value of the measured CN value in relation to an operator selected set point.
Tailings Storage Facilities

The Jundee operation maintains two active Tailings Storage Facilities (TSFs); the Fisher In-pit TSF and TSF2. A third facility, TSF1, is an inactive facility that operated from 1995-1999. Although the batteries of TSF1 are currently being prepared for closure, a recent geotechnical study has confirmed that the facility may be suitable for future tailings deposition predicated on the outcome of regulatory approvals.

The Fisher In-pit TSF was commissioned in 2004 and comprises a mined out pit with a surface area of 14.5ha. The facility is currently filled to 90% capacity. Water recovery from the Fisher TSF can be as high as 95% in the summer months. To prevent seepage from entering the adjacent underground works and water system, the pit is supported by three seepage recovery bores and numerous monitoring bores.

TSF 2 is a paddock style TSF and covers approximately 90ha in surface area. The TSF was last raised by 2.0m in Q4 2012, a further 2.0m raise in planned for Q1 2015 which will provide a further 24 months tailings deposition capacity – the TSF 2 regulatory permit allows for this and a further 3.5m lift if required. Water recovery averages 43% with remaining water lost through evaporation and seepage. A network of recovery bores is employed around the facility to compliment the under drainage and perimeter toe drain systems which also recover seepage.

Exploration

Jundee has a significant land holding of some 420sqkms with over 1,000 mineralised lode structures containing many high point anomalies. The field has yielded 6.2M ounces with an additional 410,000 ounces remaining in reserves and 95,000 ounces of inferred resources. The field has enjoyed a good history of Reserve Replacement Ratio with full reserve replacement occurring eight out of the last 18 years with a life of mine discovery cost per ounce of $25 USD.

The Westside lodes have been the dominant ore source however a lack of drilling has limited future significant additions to this system and they currently hold only 21% of the remaining in situ reserves. To December 2013, the Gateway mineralization which sits to the west of the main field is the largest remaining deposit with 122k ounces of reserves and 54k ounces of inferred resources at end 2013. Exploration along strike of the Gateway system in 2012/13 identified the Gringotts extension to the main Gateway lodes. This combined system is open along strike and at depth and is performing above expectations.

The site exploration strategy going forward will focus on the following three areas:

- defining incremental in mine additions adjacent to and amongst readily accessible infrastructure through detail geological analysis of current- and historic-operational in-mine areas (Barton, Invicta, and Westside).
- lateral In-mine expansion into known new mining areas – of which the Moneyline-Nexus-Midas systems, located between the Gateway and Barton areas, will be the main focus for in mine additions in FY2015. These areas will be accessed via development from current underground infrastructure in the Gateway and Barton mines and supported by extensive underground exploration drilling.
- regional surface exploration outside the Jundee Golden Triangle is a focus for Northern Star with priority focussed on some key near mine areas identified for testing during FY2015.

Support Infrastructure

Electricity generation - Jundee has 2 Power stations – one operating predominately diesel fired sets has ~ 8MW and distributes at 3.3KV – the other being total fired on gas can produce ~12MW and distributes at 11KV.

NST Jundee owns a lateral pipeline which runs 40km to connect to the Goldfields Gas Transmission pipeline which passes east of Wiluna – its transport off take agreement is limited to 3.8 Tj/day. Jundee presently obtains gas from Apache which owns sub sea level gas reserves off the Western Australian coast.

Water supply – Jundee operates in a semi arid climate and water resources are scarce. Accordingly, water quantity and quality is a key risk to business continuity and as such water conservation and recovery has a high priority at the site – the site has a negative water balance of 3.75m/year. Jundee has two operating bore fields located 10 and 14km NE of the operation which provide process water. There are also several low TDS and potable water bores located in areas immediately adjacent to the Mill and camp.
The Jundee Accommodation Village has rooms for 600+ employees and boasts some excellent recreation facilities including two squash courts, a fully equipped gymnasium, Tennis court, Basketball court, Beach volleyball court, mini AFL ground, a swimming pool and a well equipped Tavern/shop.

The Jundee Airstrip is a 2,300m gravel strip and caters for turbo-prop aircraft – flights to and from Perth-Jundee are scheduled Monday–Thursday. There is a local regional airport located at Wiluna some 50km away.

The site operates on a fly-in fly-out basis 24/365 with work rosters predominantly either nine days on and five days off or 14 days on and seven days off – there are however some variations to this.

The Jundee operation has a reputation of having a positive and well balanced social climate – it has an active social club, a golf club which operates off-site during R&R breaks, an excellent Kids Club which sponsors activities for the children of Jundee employees, teams participate in organised sporting events against the local Wiluna community and nearby mine sites, and it has a proud history of supporting charitable causes.

An emergency response capability is paramount in such a remote location as Jundee and the operation receives a tremendous service from the many individuals that have volunteered to provide this essential service.

Occupational Health and Safety

Jundee utilises Northern Star’s safety program and management systems, which include detailed standards and procedures. Together, these programs and systems form the cornerstone of safety at Northern Star, ensuring that employees have the tools they need to work safely.

The Company also strives to ensure employees are fit to conduct their work in a safe manner. With this goal in mind, Northern Star offers healthy meal alternatives, fitness equipment, physiotherapy services and a quality medical service for live-in employees.

Mining is not dangerous but it is hazardous and reducing residual risk to acceptable levels by driving the use of higher order controls from the hierarchy of controls remains a focus.

Community

The Jundee mine is located 50km NE of the town of Wiluna. It is situated on the edge of the Gibson Desert at the gateway to the Canning Stock Route and Gunbarrel Highway. The town was first established in 1898 and is at the centre of an area primarily dedicated to mining and the local pastoral industry.

Jundee has a community engagement program aimed at assisting and developing the Wiluna community where possible. It has developed specific training programs to help the local Indigenous people acquire work ready skills and has successfully developed indigenous business enterprises to provide short-term labour resources to the mine. NST Jundee is a key member of the Wiluna Regional Partnership Agreement and substantial progress has been made in establishing the Martu Ranger Group which provide environmental and land management services to the Jundee operations and associated pastoral tenements. The Martu Survey (the Muntjiltjarra Wurrumu Group) project, developed under the banner of the Regional Partnership Agreement, is also a finalist in the 2014 Reconciliation Australia Indigenous Governance Awards.

Summary of Previous Production and Financial results (2007-2013)

Jundee have been a significant contributor to the production and financial metrics of the previous owner of the deposit Newmont Mining. Summary of the last seven years performance are as below.

<table>
<thead>
<tr>
<th></th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold Produced OZ</td>
<td>291,061</td>
<td>378,163</td>
<td>410,448</td>
<td>335,153</td>
<td>333,009</td>
<td>333,368</td>
<td>278,550</td>
<td>2,359,753</td>
</tr>
<tr>
<td>Free Cash Flow USD '000</td>
<td>$24,506</td>
<td>$138,270</td>
<td>$236,224</td>
<td>$199,776</td>
<td>$308,412</td>
<td>$297,729</td>
<td>$160,195</td>
<td>$1,365,111</td>
</tr>
<tr>
<td>Total CAS/Gold Sold USD/Oz</td>
<td>$474</td>
<td>$374</td>
<td>$337</td>
<td>$442</td>
<td>$538</td>
<td>$672</td>
<td>$738</td>
<td>$848</td>
</tr>
</tbody>
</table>

Source: Newmont Mining Corporation
Closure and Reclamation

The site has undergone four changes of ownership in its operating history and accordingly has been subjected to various internal reclamation standards. Newmont rationalised the operation’s infrastructure during 2007, decommissioning the Nimary processing and accommodation facilities. Open pit mining at the southern leases also ceased in 2007 and NST Jundee became a purely underground operation based at the main Jundee mining area. The operation commenced a major progressive rehabilitation and closure program in 2008 coinciding with the decommissioning of the Nimary processing facility and associated infrastructure and the suspension of open pit mining in the southern lease areas. Only one WRL has not been rehabilitated in the Nimary mining area. The majority of the rehabilitation works were completed between 2009 and 2011. A comprehensive rehabilitation and closure plan has been developed and this is supported by a detailed works schedule. Currently no active earth works rehabilitation has been undertaken since the completion of Waste Rock Dump 10 in April 2013. Since April 2008 the site has completed approximately 280ha of rehabilitation earthworks.

For further information, please contact:
Luke Gleeson
Investor Relations and Senior Business Analyst
M: +61 412 977 923
E: Igleeson@nsrltd.com

30 July 2014